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ABSTRACT 

Many transportation organizations have embraced Accelerated Bridge 

Construction (ABC) to reduce both the traffic impacts and societal costs. One of the most 

common means to achieve ABC is to utilize prefabricated elements, which are connected 

together on-site to construct a bridge. ABC will not be effective if the barrier requires 

cast-in-place construction. The purpose of this report is to present details of a precast 

barrier and two connection alternatives between the deck and precast barriers. In addition, 

a new connection between two adjacent prefabricated barriers is presented. 

One barrier to deck connection uses inclined reinforcing bars with threaded ends 

that get connected to bar splicers embedded in the bridge deck. The other barrier to deck 

connection uses u-shaped bars that are inserted into the barrier from the underside of the 

bridge deck overhang. Factors that were considered when designing the connections were 

minimal damage to deck, easy replacement of barrier, constructability, durability, and 

cost. The barrier to barrier connection utilizes headed reinforcement in the longitudinal 

and transverse directions. The connections were designed to meet TL-4 loads as per 

MASH and LRFD Bridge Design Specifications. The report presents results from of 

various tests and show that all proposed connections are viable for accelerated 

construction of concrete barriers though some refinement to the tested details will be 

needed. 

 



www.manaraa.com

1 

CHAPTER 1 

 INTRODUCTION 

 

1.1 Overview 

In bridge systems, one very important component of safety is the bridge barrier. The 

primary purpose of bridge barriers is to contain, redirect, and shield vehicles from off-road 

bridge accidents. Cast-in-place barriers are typically used and are proven to meet the 

structural requirements needed to achieve this purpose. However, in bridge construction, the 

use of prefabricated elements and systems has been gaining interest and momentum. Using 

prefabricated elements, bridges can be constructed or repaired faster with less disruption to 

traffic and with a safer work zone environment. Another benefit of prefabricated systems is 

the improved product quality due to the use of precast components in a controlled setting. 

Ensuring consistent quality during cast-in-place concrete barrier construction is a challenge, 

which increases the maintenance costs (see Figure 1.1). However, the use of precast concrete 

barrier systems for bridge decks is still a relatively new development that needs more 

attention and research, which is the focus of this report. 

 
Figure 1.1 Cast-in-place barrier requiring maintenance (Courtesy of T. Capuano) 
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1.2 Accelerated Bridge Construction 

The Federal Highway Administration states that there are approximately a quarter of 

the Nation’s bridges that need rehabilitation, repair, or total replacement. On-site bridge 

construction and repair can have significant impacts to mobility and safety. Accelerated 

Bridge Construction (ABC) techniques are used to reduce these bridge construction 

challenges. The purpose of ABC is to minimize mobility impacts that occur due to onsite 

construction. ABC improves the site constructability and the total project delivery time. The 

most common form of accelerated bridge construction is with the use of prefabricated 

elements and systems. Using prefabricated elements and systems, the material quality and 

product durability is also improved.   

With ABC, the bridge components are built outside of the traffic area and then 

transported to the bridge site where they can be installed quickly (see Figure 1.2, Courtesy of 

Federal Highway Administration [FHWA]). This will help reduce the onsite construction 

time, weather-related delays, and impacts to traffic, while improving worker safety. 

Prefabricated elements and systems include decks, girders, piers, columns, and abutments. 

Prefabricated concrete bridge barriers are an emerging prefabricated element that will assist 

in reducing onsite construction time and traffic impacts. With more research and 

development, prefabricated bridge barriers may also improve bridge safety with appropriate 

anchorage details and construction quality while providing a viable alternative for easy repair 

of a damaged barrier. 
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Figure 1.2 Prefabricated bridge element (Courtesy of FHWA) 

1.3 Current Practices 

Currently, many concrete bridge barriers are installed using cast-in-place concrete.  

The barrier is connected to the bridge deck with vertical and inclined reinforcing steel from 

the bridge deck overhang.   To procure proper alignment of the steel and the barrier, the 

vertical reinforcing in the deck must be secured so that it prevents movement during bridge 

deck construction.  Once the deck construction is complete, the barrier is then cast using 

slipform over the exposed vertical deck reinforcing steel connected with additional 

reinforcement.  Figure 1.3, taken from an FHWA bridge rail memorandum, shows the steel 

reinforcement for a standard 42-in. tall F-shaped barrier. Common barrier profile shapes 

include the New Jersey shape, the F-shape, and the single-slope barrier, and are discussed in 

the following chapter. The image shows the vertical reinforcing steel extending from the 

bridge deck, which established the connection between the barrier and the bridge deck. 

Completed ABC projects, such as the Rock Ridge Road bridge in Polk County, 

Florida, consisted of complete replacement of the substructure and superstructure. Per a 

presentation given in the 2014 Design Training Expo, the deck was reconstructed using 

precast, prestressed slab units. The new F-shaped barriers, however, were constructed as cast-
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in-place. A portion of the rebar was built into the deck slab unit, Figure 1.4, and bent to be 

integrated with the concrete barrier reinforcing as shown in Figure 1.5. 

 

 
Figure 1.3 F-Shaped concrete barrier and reinforcement details (Courtesy of FHWA) 

  
Figure 1.4 Rock Ridge Road bridge with exposed barrier connection reinforcement (FDOT 

2014 Design Training Expo) 
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Figure 1.5 Rock Ridge Road barrier after adding additional reinforcing (FDOT 2014 Design 

Training Expo) 

If a vehicle were to collide with a commonly constructed bridge barrier, a major 

repair project would take place.  To install a new barrier the construction would include a 

partial deck replacement. The construction of a bridge deck can be an intensive project with 

added costs. With the new practice of accelerated bridge construction and the use of 

prefabricated concrete bridge barriers, the construction and repair of a bridge deck or barrier 

rail would see more benefits, especially societal benefits, than current practices.   

With the development of a precast bridge barrier system, there will be more benefits 

than the current practices with cast-in-place construction.  The prefabricated barriers will 

result in a reduction in construction time.  This also means that the bridge would be closed 

for a short period, minimizing the impact to the travelling public.  Another benefit will be the 

ability to maintain and repair the barrier.  With good connection details, precast barrier 

systems can be designed to be easier to replace with a reduced construction time.  This 

should also limit the damage to the bridge deck. 

With the significant interest in ABC, there has been valuable research in many 

important and varied areas.  However, one area that has not yet received notable research is in 
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the area of prefabricated, crash-tested barrier rails.  ABC projects to date have tended to rely 

upon systems that utilized crash-tested systems integrated into other, larger prefabricated 

elements. Although this has proved sufficient while ABC has been in its relative infancy, there 

is a critical need to develop prefabricated bridge concrete barriers with appropriate connection 

details together with validation tests. 

1.4 Scope of Research 

Owners are moving to prefabricated bridge elements to facilitate rapid bridge 

construction and minimize the impact of construction on traffic. Development of 

prefabricated bridge barriers must be attached to a bridge superstructure with durable 

connections and shown to satisfy the Manual for Assessing Safety Hardware (MASH) 2009 

Specifications (NCHRP Report 350,1993). Needed anchorage systems include robust details 

that connect the prefabricated bridge barrier to the bridge deck as well as that connect one 

prefabricated bridge barrier to an adjacent prefabricated bridge barrier. The long-term goal of 

this research effort is to establish crash-tested prefabricated concrete bridge barriers with 

recommended durable anchorage systems (between the barrier and the deck and between 

adjacent sections of barrier) and details that meet design test level TL-4 in accordance with 

MASH and LRFD Bridge Design Specifications (NCHRP Report 350,1993).    

The scope of this research project is to establish a precast barrier with appropriate 

connections designed to test level TL-4 to be used in bridge construction. This was done by 

developing connection details for the use of a precast barrier system and by evaluating the 

developed details based on laboratory testing. Using quasi-static loading, the precast barrier 

and the deck system were evaluated to examine the load distribution and connection 

performance under different loading scenarios. Once satisfactory connections are established, 

the precast barrier needs to be crash tested in the next phase of the study.  
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1.5 Research Objectives 

This research project contains several components. To get a better understanding of 

precast barrier systems, a literature review was conducted to review all cast-in-place and 

prefabricated barrier designs and details, including anchorage systems that have been crash 

tested for use on the national highway system. The search also included a survey distributed to 

several state DOTs to determine their needs related to prefabricated concrete bridge barriers.    

Based upon the results of the literature search, conceptual designs of prefabricated 

barriers with associated anchorage systems and details were developed. Although the ultimate 

goal was to develop a system that can be adopted for multiple barrier shapes, only one profile 

shape was selected in this experimental investigation.   Two concepts for connecting the barrier 

to the bridge deck were designed for testing and one detail for connecting two adjacent barriers 

was conceptualized.    

The laboratory testing was conducted on two full-scale test barriers with connections 

between the barrier as well as with a bridge deck using quasi-static loading.  The barrier 

systems were evaluated for their connection performance, their individual strengths and force 

transfer, and corresponding distribution in the barrier and the bridge overhang. Although the 

research focused on barrier details away from the end regions, suggestions to incorporate the 

details for end regions of the bridge are provided. 

 

1.6 Report Layout 

Following this introduction in Chapter 1, this report includes a literature review of 

cast-in-place and prefabricated barrier designs and details including anchorage systems that 

have been crash tested for use on the national highway system.  Chapter 3 includes the design 

criteria of the prefabricated barriers. The conceptual designs of the developed anchorage 
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systems and the experimental specimen design criteria and loading are presented in Chapter 

4. The laboratory results and evaluation of two barrier to deck connections and one barrier to 

barrier connection are discussed in Chapter 5. Finally, Chapter 6 presents the conclusions of 

the study and recommendations to improve the precast barrier connection details and 

suggestions for next the phase of the study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Introduction 

In order to get a better understanding of the design and performance of prefabricated 

concrete bridge barriers, a literature review was performed.   Accelerated bridge construction 

and the use of prefabricated elements and systems has received significant research attention 

in recent years.   However, one area that has not yet received notable research is in the area 

of prefabricated, crash-tested barrier rails.   Nonetheless, a review was completed in order to 

get the state of knowledge at the beginning of the project.   

2.2 Design of Barriers 

The primary function of a barrier system is to contain and redirect colliding vehicles.   

The American Association of State Highway and Transportation Official standards 

[AASHTO] suggest that all vehicle traffic barriers must satisfy both geometric and strength 

requirements in order to have sufficient strength to survive the initial impact of the collision 

and to remain effective in redirecting the vehicle (LRFD Bridge Design Specifications, 

2012).   The barriers are designed so that if any failures occur, they happen within the barrier 

rather than to the bridge deck.   The barrier can be readily repaired, whereas repairing a deck 

would cost more, take more time and create more disruption.   
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2.2.1 Concrete barrier strength 

According to MASH, barriers can be tested to six different test levels.  The test level 

is defined by the impact conditions and the type of vehicle impacting the barrier.  The first 

three test levels use passenger vehicles while the last three tests use a form of heavy truck. 

The test levels are summarized in Table 2.1. 

Table 2.1 Test levels (MASH, 2009) 

 

According to the AASHTO LRFD Bridge Design Specifications (2012), when 

designing barriers, the design forces and geometric criteria to be used in developing test 

specimens should be taken as specified in Table 2.2. Figure 2.1 shows the design force 

locations that must be applied to the barrier for each test level. 

Table 2.2 Design forces for traffic barrier (AASHTO, 2012) 

 

Test 

Level

Test Vehicle Designation and 

Type

Weight of 

Vehicle (lb)
Speed (mph) Angle (degrees)

1100C (Passenger Car) 2,420 31 25

2270P (Pickup Truck) 5,000 31 25

1100C (Passenger Car) 2,420 44 25

2270P (Pickup Truck) 5,000 44 25

1100C (Passenger Car) 2,420 62 25

2270P (Pickup Truck) 5,000 62 25

1100C (Passenger Car) 2,420 62 25

2270P (Pickup Truck) 5,000 62 25

10000S (Single-Unit Truck) 22,000 56 15

1100C (Passenger Car) 2,420 62 25

2270P (Pickup Truck) 5,000 62 25

36000V (Tractor-Van Trailer) 79,300 50 15

1100C (Passenger Car) 2,420 62 25

2270P (Pickup Truck) 5,000 62 25

36000T (Tractor-Van Trailer) 79,300 50 15

5

6

Test Conditions

1

2

3

4

Design Forces and Designations TL-1 TL-2 TL-3 TL-4 TL-5 TL-6

F t  Transverse (kips) 13.5 27.0 54.0 54.0 124.0 175.0

F L  Longitudinal (kips) 4.5 9.0 18.0 18.0 41.0 58.0

F V  Vertical (kips) Down 4.5 4.5 4.5 18.0 80.0 80.0

L t  and L L  (ft) 4.0 4.0 4.0 3.5 8.0 8.0

L V  (ft) 18.0 18.0 18.0 18.0 40.0 4.0

H e  (min) (in.) 18.0 20.0 24.0 32.0 42.0 56.0

Minimum H  Height of Rail (in.) 27.0 27.0 27.0 32.0 42.0 90.0

Test Levels
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Figure 2.1 Bridge barrier design force locations as suggested in AASHTO LRFD Bridge 

Design Specifications (AASHTO, 2012) 

For this research project, as previously noted, the barriers were designed to sustain 

loads from test level TL-4.  TL-4 is suitable for high-speed highways, freeways, 

expressways, and interstate highways with a mixture of trucks and heavy vehicles.  

Accordingly, the barrier and its connection to the bridge deck must resist a transverse design 

force, Ft, of 54 kips, which is distributed over a length of 3.5 feet of the barrier, see Table 

2.2.  This value represents the distributed impact force of a vehicle collision.    

2.2.2 Yield line analysis 

The strength of a barrier is based on the formation of yield lines at the limit state.  

The yield line approach can be used to check the strength of the concrete barrier away from 

an end or a joint and determine the distribution of the loads that must be transferred to the 

deck overhang.  The variables used are illustrated in Figure 2.2. The nominal resistance of 

the barriers to transverse loads can be found using Eqs. (2.1) and (2.2).  
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Figure 2.2 Yield line pattern used for designing concrete barrier under Load, Ft (AASHTO, 

2012) 

�� � ��
� � �	���


� � ��
������
��         (Eq. 2.1) 

�� � 	 �
������
 	8�� � 8�� � �����

� 
       (Eq. 2.2) 

where   H = height of wall (ft); 

Lc = critical length of yield line failure pattern (ft); 

Lt = longitudinal distribution length of impact force (ft); 

Mb = additional flexural resistance of beam, if any, at top of wall (kip-ft); 

Mc = flexural resistance of wall about an axis parallel to the longitudinal axis of the 

bridge (kip-ft/ft); 

Mw = flexural resistance of wall about vertical axis (kip-ft); and 

Rw = nominal barrier resistance to transverse load (kips). 

The flexural resistance of the barrier wall about the vertical axis is based on the 

horizontal reinforcement within the wall and the flexural resistance of the wall about an axis 

parallel to the longitudinal axis is determined from the vertical reinforcement.  Since the 

barrier wall varies for most profile shapes, it is convenient to divide the wall into sections for 
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calculation purposes.  Once the bending strengths are found for each section, the total 

moment strength of the wall about the vertical axis is the sum of the strengths.  For the 

horizontal axis, a weighted average is used to find the total moment resistance. 

Since TL-4 is the focus of this project, the values used to determine the yield line 

pattern for this case are displayed in Table 2.3 

Table 2.3 Test level 4 design forces (AASHTO 2012) 

Design Forces and 

Designations 
TL-4 

Ft Transverse (kips) 54.0 

FL Longitudinal (kips) 18.0 

FV Vertical (kips) Down 18.0 

Lt and LL (ft) 3.5 

LV (ft) 18.0 

H (in.) 42.0 

 

2.3 Experimental Evaluation 

Almost all roadside safety features are required to sustain some minimum structural 

capacity to assure that they can resist the applied load.  Barriers must have sufficient 

structural capacity to resist lateral loads from an impacting vehicle.  To demonstrate this in a 

laboratory setting on a new development of barrier system, there are multiple types of test 

that can be done.  Laboratory testing can include, but is not limited to, a gravitational 

pendulum, a bogie test, a static test, or a vehicle crash test. The cost of these tests would vary 

significantly and each of these tests provides a valuable set of information. 

An emerging trend in evaluating impact performance of barrier rails is the use of 

surrogate test devices such as a bogie vehicle or a pendulum.  The gravitational pendulum is 

characterized by a striking mass that swings in a circular arc suspended by cables or rigid 

arms from a main frame.  The structure of the mass is designed to replicate the dynamic 



www.manaraa.com

14 

crush properties of a model test vehicle and is considered a low-speed test device.  Due to 

height limitations, gravitational pendulums are usually used to test impact speeds of about 25 

mph or less.  As stated previously, the purpose of this study is to develop a barrier that can 

withstand an impact at Test Level 4.  Test level 4 passing impact speeds are 62 mph, 

therefore, a gravitational pendulum would not be the best option for this test. 

A bogie vehicle is designed to replicate vehicular crush characteristics.  It is a vehicle 

on four wheels with a mass equal to the selected test level vehicle.  The vehicle is steered or 

guided to impact the test specimen.  A push or tow vehicle can be used to get the bogie to the 

impact speed.  Designing and calibrating the bogie to represent the selected passenger vehicle 

would be a long and expensive process.   

Many transportation safety features, including the bridge barriers, are designed to 

meet the required ultimate capacity.  Static testing can be used to load the structural system 

beyond the elastic limit until it experiences failure.  This could be used to evaluate and 

validate the safety of critical details and connections.  Static testing can also help identify the 

force transfer paths and evaluate failure modes.  Static testing is a simple and easy way to test 

and compare design details.  For all these reasons, it was chosen to examine the precast 

concrete bridge barriers for this project. 

After a barrier system has gone through the early stages of development and has been 

tested to reach its desired capacity, it may need to go through a final proof test through a 

vehicle crash test.  Vehicle crash tests are the most direct tie to an actual highway collision.  

This type of testing though is fairly expensive to perform and requires extensive facility 

capabilities. 
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2.4 Practice of State DOTs 

With the help of the Iowa Department of Transportation, current practices from other 

DOTs was sought. A survey was distributed to various DOTs. The survey also included what 

is currently in use for precast barriers within the states.  This resulted in responses from 22 

states.  Of the 22 states who responded, eight of them were currently using a form of precast 

barrier system. Table 2.4 displays the survey responses from the states for developing a 

precast barrier. Of the eight responses with experience with precast barriers, most of the uses 

are for temporary purposes. Other systems in use are built into the bridge deck instead of 

connecting to the bridge deck as a separate unit. Six of the eight responses had crash tested 

their precast barrier systems to either test level three or level 4. From these responses, a 

standard shape and length were determined for the purposes of research reported herein. The 

shape chosen for this research was a standard F-shape barrier that is 12 feet in length. This 

survey also demonstrates the need for more research in the area of permanent, precast, 

concrete, and bridge barriers. 

Table 2.4 Summary of results obtained from eight states 

State 

Precast 

barriers 

in use? 

Profile 
Barrier 

Length 

Barrier 

Height 
Connection Testing 

Desired 

Test Level 

Alaska Yes F or NJ 12'-6" 32" 
Pinned 

connection 
  TL-3 

Nebraska Yes F 12'  Bolted 
Full-Scale Crash 

Test 
TL-4 

New York Yes SS or NJ 20' 
32" & 

42" 

Bolted or 

hooked 

Static - Hydraulic 

ram, crash test 
TL-4 

Ohio  Yes Temp. NJ 
10' or 

12' 
32" Anchor bolts 

Full-Scale Crash 

Test 
TL-3 

Pennsylvania Yes 
F or 

Vertical 
12' 42" 

Integral with 

deck 
No   

Rhode Island Yes NJ 10'-20' 33" 

Thru 

bolt/epoxy 

adhesive 

No  

Texas  Yes Vertical 30' 32" Through bolt 
Full-Scale Crash 

Test 
TL-3 

Utah Yes SS 
23'-6" - 

25' 
42" 

Integral with 

deck 
No TL-4 
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2.5 Precast Barriers 

Precast barriers are generally categorized by the shape of their profile.  The profile 

shapes are demonstrated in Figure 2.3. The New Jersey shape, the F-shape and the single 

slope are the three most commonly used precast concrete barrier profiles in the United States.  

The barrier shapes were designed to disperse the energy of the impact of the crash.  The F-

shape and the New Jersey shape have a three-inch vertical face starting at the pavement. 

They then break into a sloped face and change to a nearly vertical face towards the top of the 

barrier.   Some of the impact energy is dissipated from the climbing or lifting action that 

occurs when a vehicle collides with the barrier.   Between the F-shape and the New Jersey 

shape, the only difference is the distance from the ground to the sloped face.   The single 

slope barrier has a constant-sloped front face.   Due to this vertical face, single slope barriers 

do not lift the vehicle and therefore do not disperse the energy quite like the F or New Jersey 

Shape.  Described below are some suggested details for using precast barriers.  

 

Figure 2.3 Commonly used concrete bridge barrier profile shapes 

2.5.1 Florida DOT 

There are a few different permanent precast concrete barriers that have been 

developed with different anchoring methods.  Common methods for anchoring precast 
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concrete barriers to bridge decks include through-deck bolts and adhesive anchors.  With the 

through-deck anchoring method, a hole is drilled through the entire bridge deck and a bolt is 

inserted through both the barrier and the deck.   It is secured with heavy washers and nuts on 

both ends of the steel bolt.   This concept is used by the Florida Department of Transportation 

(FDOT Design Standards, 2012).  The concept is called the “Type K Temporary Concrete 

Barrier System.” It is used for median traffic barriers but may also be used on concrete 

bridge decks.  The shape of the median traffic barrier is similar to a New Jersey or an F-

shape profile. Due to traffic on either side of the barrier, the sloped faces are on both sides 

instead of one side for a bridge barrier. One challenge with this design is getting access to the 

underside of the bridge deck to secure the nut.  Another issue is weathering of the exposed 

connection.  Figure 2.4 shows a typical anchoring detail for the through-deck configuration. 

 

Figure 2.4 Through-deck bolting detail developed by Florida DOT (FL DOT 414) 

Another precast concrete barrier anchoring technique that is used by the Florida DOT 

is an adhesive-bonded anchor.  This method is completed by drilling a hole into the bridge 

deck and then inserting a threaded bolt through the barrier and into the deck.  The bolt is then 

secured with an adhesive.  This method can be seen in Figure 2.5.  This concept is also used 
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by the Florida DOT.  It is used for median traffic barriers but may also be used on concrete 

bridge decks.  One issue with this anchoring method is the anchorage strength of the adhesive 

used. 

 

Figure 2.5 Adhesive-bonded anchor detail (FL DOT 414) 

2.5.2 Ryerson University 

A different way of connecting a barrier with the through-deck method is by 

pretensioned rods that are inserted all the way through the wall and the deck slab.   A study 

conducted by Ryerson University in Canada tested this method.  The pretensioned rods were 

then anchored to the bridge deck by the end plates, washers, and nuts.   Details of this system 

can be seen in Figure 2.6.   As before, the challenges with this detail is gaining access to the 

bottom of the bridge deck and the corrosion of the exposed hardware.    
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Figure 2.6 Ryerson barrier to deck slab connection details (Patel, 2008) (All dimensions are 

in mm; 1 mm = 0.0394 in.) 

The vertical joint between the two barriers that was proposed by Ryerson University 

includes an Hollow Structural Steel (HSS) section with shear studs welded on to provide 

anchorage for one segment.  The other segment would have an S-shaped steel beam 

projecting from it such that it would slide into the HSS in the other barrier.  This connection 

detail is illustrated in Figure 2.7 but was not subjected to any structural testing. 

 

 

Figure 2.7 Proposed barrier to barrier connection details by Ryerson University (Patel, 2008) 
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Four barrier segment units with the barrier to bridge deck connection were made and 

tested with various loading patterns.  One of the five model units was a cast-in-place detail 

used for comparison.  The barriers were tested according to the Canadian Highway Bridge 

Design Code (CHBDC) at performance level 3 (PL-3), which is comparable to MASH TL-5.  

A hydraulic jack was used to apply a horizontal load to the barriers, shown in Figure 2.8.  

Each specimen was quasi-statically loaded to collapse.  All precast units with the barrier to 

deck connection proved to be adequate for the desired design loads. 

 

 

Figure 2.8 Schematic drawing of barrier load application (Patel, 2008) 

2.5.3 Clampcrete 

A precast barrier wall system similar to the adhesive anchored connection was 

engineered and patented by Clampcrete.  It was crash tested at TL-4 in accordance with 

AASHTO Load Resistance Factor guidelines and approved for use by the Federal Highway 

Administration in 1989.  It is connected to the bridge deck by drilled-in polyester resin 
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anchors. This system, shown in Figure 2.9, can be applied to any of the profile shapes in both 

permanent and temporary barriers. These barriers come in 20-foot-long segments with a 

height of either 32 inches or 34 inches.  The connections between the barriers consist of a 

minimum of three deformed reinforcement dowels as seen in Figure 2.9.  The dowels are 

bonded into dowel holes in the adjacent barrier section. 

 

 

Figure 2.9 Clampcrete barrier system (Clampcrete.com) 

2.5.4 Texas Transportation Institute 

A study done by Texas Transportation Institute in 2005 used an x-bolt connection 

concept for a portable, temporary concrete barrier.  A schematic drawing of the connection 

design can be seen in Figure .  The purpose of the study was to design a portable concrete 

traffic barrier with the minimum dynamic deflection that could also be easily inspected and 

repaired.  The connection was studied using full-scale crash tests (TTI, 2005).  As seen in 

Figure , the connection uses two threaded rods across the joint.   
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Figure 2.10 X-Bolt connection concept (TTI, 2005) 

 

Figure 2.11 X-Bolt test specimen (TTI, 2005) 

The barriers had a standard F-shape profile and were 32 inches in height.  The cross 

bolts used a 7/8-inch diameter threaded rod and were 25-1/4 inches and 29 inches in length.  

The cross-bolt barriers were tested under TL-3.  There were two crash tests conducted.  One 

test consisted of 20, 10-foot long concrete barrier sections for a total test installment length of 

about 200 feet.  A 4960 lb pickup truck was used for the crash test.  The resulting damage is 

shown in Figure 2.12.  Some permanent deformation of the connection bolts was noticed 

when disassembling the barrier.  The barrier system experienced 27.0 inches of maximum 

deflection. 
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Figure 2.12 Damage to 10-ft long prefabricated barrier with X-Bolt connections (TTI, 2005) 

The second test had the same barrier and connection details, but the test installment 

included seven 30-foot barrier segments for a total length of about 210 feet.  The pickup 

truck used for this experiment was 4531 lbs.  The damage resulting from the vehicle impact 

is shown in Figure 2.13. After the test, the connection bolts could easily be removed and 

possibly reused.  The maximum deflection experienced by the system was 19.0 inches. 

 
Figure 2.13 Damage to 30-ft long precast barrier with X-Bolt connections (TTI, 2005) 

2.5.5 Midwest Roadside Safety Facility 

The Midwest Roadside Safety Facility (MWRSF) and the University of Nebraska, 

Omaha conducted a study with an objective of developing an aesthetic precast concrete 

bridge rail.  This study examined six different dry joint design details and three different 

grouted joint design methods.  Two of the most promising details were selected to be tested 

using a dynamic impact bogie vehicle shown in Figure 2.12  
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Figure 2.14 Impact bogie vehicle (MWRSF, 2012) 

The first tested connection used I-shaped steel segments to connect the rails.  The I-

shaped sections were placed inside steel pockets that were filled with grout.  This is 

illustrated in Figure 2.15. During the test, the joint failed and the rail segments completely 

separated.  The connection was able to resist a force of 143 kips, exceeding the design forces 

needed for TL-4.  The test connection and the failure of the connection are shown in Figure 

2.16 and Figure 2.17, respectively. 

 

Figure 2.15 Plan view and elevation view of I-shaped rail connection between barriers 

(MWRSF, 2012) 
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Figure 2.16 A plan view of MWRSF I-Shaped rail connection (MWRSF, 2012) 

 

Figure 2.17 Failed MWRSF I-Shaped rail connection (MWRSF, 2012) 

The second tested connection used two bolts and two shear tubes to connect the 

adjacent rails.  During this test, the rails stayed connected, but the joint was severely 

damaged.  The concrete between the steel pockets completely broke apart.  The connection 

was able to resist a force of 102 kips, exceeding the design force of 54 kips needed for TL-4.  

The test connection and the failure of the connection are shown in Figure  and Figure , 

respectively. After these experiments were conducted, the results were analyzed, and they 

were redesigned according to their failures. 
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Figure 2.18 Side bolts and shear tube connection prior to testing (MWRSF, 2012) 

 

Figure 2.19 Side bolt and shear tube connection failure (MWRSF, 2012) 

Redesign of the I-shaped steel connection included an upscale in rebar sizes from no. 

5 longitudinal rebar to no. 7 threaded rebar and the steel pockets were changed to steel tubes. 

The shear reinforcement was modified as well. To prevent the connection from prying open, 

shear bolts were added. This is detailed in Figure 2.20 below. This joint held up to an 

approximate load of 100 kips, exceeding the design impact force of 62 kips. The joint also 

sustained minimal damage. The resulting damage is shown in Figure 2.21. 
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Figure 2.20 Plan view and elevation view of I-shaped rail connection improvements 

(MWRSF, 2012) 

  

Figure 2.21 Redesign I-Shaped rail connection after bogie testing (MWRSF, 2012) 

During the initial improvements, another alternative to the I-shaped connection arose. 

Instead of a steel I-shaped connector, this joint utilized a threaded rod to connect the adjacent 

rail pockets. Similar to the first redesign, this detail also increased the rebar size to a single 

no. 8 bar with threaded ends. A shear plate was placed between the pockets with U-shaped 

bars wrapping around the plate and extending into the rail. This is detailed in Figure 2.22 

below. This joint sustained a load that averaged over 100 kips and absorbed slightly more 

energy than the grouted I-shaped joint. However, the specimen suffered much more damage 

with concrete spalling and cracking. Damage after testing is illustrated in Figure 2.23. 
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Figure 2.22 Plan view and elevation view of alternate modifications to the I-shaped rail 

connection (MWRSF, 2012) 

  

 

Figure 2.23 Alternate redesign I-Shaped rail connection failure (MWRSF, 2012) 

The side bolt and shear tube connection were modified in a similar fashion. The 

longitudinal steel size was increased to a threaded no. 8 bar, the steel tubes were cut to form 

U-shaped pieces, the size of the joint pockets increased, and shear bolts were added. See 

Figure 2.24 below. The testing results of this joint proved that the connecting threaded rods 

were too weak and failed at a load just over 60 kips. Resulting damage is shown in Figure 

2.25.  
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Figure 2.24 Side bolts and shear tube connection improvements (MWRSF, 2012) 

 

Figure 2.25 Side bolt and shear tube connection after testing (MWRSF, 2012) 
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CHAPTER 3 

EXPERIMENTAL PLAN 

 

3.1 Introduction 

Based on both the literature review that was conducted and discussion with 

academics, professionals, precasters, and members of the Technical Advisory Committee 

(TAC), some guiding parameters had to be made when designing and testing the barrier 

segments.  Accordingly, it was decided that the laboratory testing would include two 

connections between the barrier and the deck and one connection between the barriers and 

that it would simulate the load on a barrier away from the bridge end regions.  The barrier 

segments chosen would be 12 feet in length with a 0.5-inch construction tolerance between 

them.  From the national survey, the barrier profile shape selected was the standard 42 in., F-

shape barrier. The deck, deck overhang, and barrier placement on the deck were designed in 

accordance to Iowa DOT standards. 

3.2 Guiding Parameters 

For this research, the design of the precast concrete barrier considered multiple 

parameters.  Those parameters include: a) ease of construction of the connections; 2) 

improved durability and lower maintenance cost; 3) easy repair of the damaged barrier; and 

4) cost effectiveness.  The laboratory testing also needed to demonstrate the safety of the 

barrier and how the loads are transferred upon impact at different locations.  With this 

project, two connections between the barrier and the bridge deck were designed.  One of the 

connections was designed to be durable, easily constructible and replaceable if it experienced 

damage due to a vehicular collision.  The other connection was designed to be cost effective 

and have a durable anchorage system, but not easily repairable. 
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3.3 Barrier to Deck Connections 

After evaluating the benefits and challenges of various connections concepts, the first 

precast barrier to be tested was designed with an inclined, #8 bar as the primary connection 

element between the barrier and deck.  A total of five #8 bars were used to connect the 

barrier segment to the bridge deck with a maximum spacing of 30 inches between two 

adjacent bars. A schematic drawing demonstrating this detail is shown in Figure 3.1. 

This first barrier to deck connection was designed to be easily constructed and 

repaired as well as durable.  At the design force corresponding to TL-4, the inclined bars 

were designed to remain elastic. After inserting the bars through the barrier, they are 

anchored into the deck using a special threaded bar sleeve hardware and grouted. With this 

connection approach, there is no steel hardware exposed to the environment.  The inclined 

rods could be stainless steel to help make them more durable.  Since the main connection 

piece would already be in place in the bridge deck the connection detail would be relatively 

simple to construct.  Upon impact, this barrier system was designed to fail in the inclined rod 

at the barrier to deck connection interface, which would make for an easier repair.  Only the 

damaged barrier segments would need to be removed and replaced versus the barrier and the 

deck.  This is because the failure in the connecting rod would minimize the damage to the 

bridge deck.  Due to the specially made hardware used within the deck and the choice of 

using stainless-steel rods, this connection may not be very cost effective. 
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Figure 3.1 Schematic drawing of inclined bar connection between precast barrier and deck 

(all dimensions are in inches) 

The second connection that was designed includes a u-shaped rebar that gets inserted 

under the bridge overhang, through the bridge deck and into the precast barrier, and grouted.  

A schematic drawing demonstrating this detail is shown in Figure 3.2. 

 
Figure 3.2 Schematic drawing of U-bar connection between precast barrier and deck (all 

dimensions are in inches) 

The second connection detail between the barrier and the bridge deck was designed 

based on minimizing the cost and ensuring durability.  Through calculations this design was 
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shown to resist the design load corresponding to TL-4.  There is no exposed steel hardware in 

this connection and stainless steel is used for the u-shaped bars to help make the connection 

system more durable.  Through the use of simple steel hardware, this connection concept is 

considered more cost effective than the inclined bar connection. However, replacement of a 

barrier connected with U-bars will be more labor intensive and may require replacement of a 

portion of the deck. More details about grouting of the connection reinforcement and of the 

interface between the precast barrier and the deck are presented in Chapter 4.  

3.4 Barrier to Barrier Connections 

The only barrier to barrier connection chosen for testing includes four double headed 

ties between two adjacent barriers. In addition, transverse reinforcement is used to provide 

confinement in the direction perpendicular to the double headed ties. A schematic drawing of 

this detail is shown in Figure 3.3. 

 
Figure 3.3 Schematic plan view drawing of the barrier to barrier connection 

The connection between the barriers was designed to create continuity between 

barriers such that the load imposed on one barrier will be appropriately distributed to 

adjacent barriers as would be the case in a slip form barrier. The connection regions need to 
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be easily fabricated with the barrier, constructed and installed.  As with the other 

connections, this also has no exposed rebar to increase its durability. 

3.5 Deck Design 

The bridge deck was designed to meet the standards of the Iowa DOT and some of 

the reinforcement quantities were refined according to the expected loading conditions.  The 

selected failure mechanism for the entire deck and barrier system was within the barrier 

connection reinforcing bars.  To ensure this, the deck had to be able to withstand the loading 

applied to the barrier, analysis of the deck reinforcement was done in SAP2000.  According 

to Iowa DOT standards, typical AASHTO type decks use #6 rebar with 10-inch spacing. For 

this project, the main concern was the response of the barrier. To ensure that the premature 

failure would not take place in deck, additional deck reinforcement was added, and the 

corresponding strain demand was monitored. The top mat of the deck would experience the 

most tension during the tests. As a result, the reinforcement was adjusted to #6 bars with 

five-inch spacing. The bottom mat was adjusted to #6 bars at 7.5 inch spacing. The force 

distribution from the application of the load to the barrier was assumed to be based on a 1:1 

slope, which is consistent with the recommendation in AASHTO.  This resulted in a seven-

foot distribution length on the bottom of the barrier and edge of the deck and a 10.5-foot 

distribution length when the load is applied sufficiently away from the edge of the barrier. 

These values were used in the SAP2000 analyses to establish the respective moment-

curvature responses. The analyzed profiles for the 7 and 10.5-foot sections are displayed in 

Figure 3.4 and Figure 3.5, respectively. Since the ends of the test barrier unit were not 

intended to simulate the details of the bridge ends, no additional reinforcement or 

modification was included. 
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Figure 3.4 End of bridge deck reinforcement (7 ft segment analysis) 

 
Figure 3.5 Bridge deck reinforcement (10.5 ft segment analysis) 

The flexural behavior of the reinforced deck cross sections is displayed in Figure 3.6. 

For the seven-foot cross section, the predicted yield moment was 2282 kip-inches and the 

predicted plastic moment was 2437 kip-inches with an idealized yield curvature of 0.00058 

1/in. The 10.5-foot section had a predicted yield moment of 3457 kip-inches and a predicted 

plastic moment of 3721 with a 0.00058 1/in idealized yield curvature. 

 

 
Figure 2.6 Moment curvature responses of different deck segments 
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CHAPTER 4 

CONSTRUCTION OF TEST UNIT 

 

4.1 Introduction 

The testing of the concrete precast barrier rails was conducted at the Structural 

Engineering Laboratory of Iowa State University.  Construction of the two precast barriers 

was completed at a precast facility and the supporting system including the deck beams and 

deck were fabricated in place in the laboratory. As previously described, two barrier-to-deck 

connections were tested: the inclined reinforcement connection, PBI, and the u-bar 

connection, PBU. Only one barrier to barrier connection was tested as planned. Testing was 

monitored by various instrumentation that included string potentiometers, Linear Variable 

Differential Transducers (LVDTs)s, strain gauges and a three-dimensional (3D) Optotrak 

system with multiple displacement targets. The test unit assembly was completed with 

multiple materials that included special reinforcement and ultraflow grout. 

4.2 Precast Barrier Construction 

The two precast barriers were built at a CoreSlab facility in Omaha, Nebraska, and 

delivered to the Iowa State laboratory. The barriers shown in Figure 4.1 were built with the 

standard F-shape barrier profile reinforcing, as previously shown in Figure 1.2.  

The first precast barrier to be tested used an inclined bar connection to the bridge 

deck, which was designed with a total of five #8 bars as the tension reinforcement at the 

connection interface. The inclined reinforcing bars were spaced at 30 inches as this was 

deemed to be the maximum spacing for practical use. To accommodate this reinforcement, 

the barrier was cast with 2.5-inch diameter, inclined corrugated ducts. For this project, this 

barrier is known as PBI (Precast Barrier with Inclined bars).   
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The second barrier included a u-shaped rebar connection. The u-bars are inserted 

from underside of the bridge overhang, through the bridge deck and into the precast barrier.  

For research purposes, one side of the barrier was designed to use #7 u-shaped bars.  The 

other side included bundled two #5 u-shaped bars.  The u-shaped barrier-to-deck connections 

were spaced at 24 inches. As with the last connection detail, corrugated ducts are cast into the 

precast barrier for the u-bar placement.  These ducts were kept vertical with a height of 21 

inches.  For the #7 bars, ducts with 2-in. of inside diameter was used.  For the bundled #5 u-

bars, the inside diameter of the duct was increased to 2.5 inches. For this project, this barrier 

is known as PBU (Precast Barrier with U-bars).   

The only barrier to barrier connection that was chosen for testing includes four double 

headed ties along the barrier length. For this project, the longitudinal double-headed tie was 

cast into PBU. Figure 4.2 displays a photo of the longitudinal double-headed ties as used. A 

receiving pocket was cast into PBI.  To connect the two barrier segments, PBU is lifted and 

slid into the pocket on PBI.  With the pocket running along the height of the barrier, there 

was minimal concrete near the barrier to barrier connection.  Another set of #3 bars were 

added to confine the connection in the transverse direction.  This detail consisted of a 

threaded, headed bar that got inserted into a steel, headed receiving piece as shown in Figure 

4.3. The headed bars were inserted as part of the connection assembly prior to grouting.   
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Figure 4.1 PBI and PBU at the CoreSlab facility prior to the concrete pour 

 

Figure 4.2 Longitudinal double-headed ties used for barrier to barrier connection 

 
Figure 4.3 Transverse double-headed ties used for barrier to barrier connection 

The end region of the two precast barriers that are supposed to form the barrier to 

barrier connection is shown in Figure 4.4. The left side of the image is PBU and has the 

exposed longitudinal ties. The right side of the image shows the PBI side. This side has the 

receiving pocket that the longitudinal ties are slid into. The transverse ties are embedded in 

PBI, on the right side of the image as indicated. 
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double-headed 

ties 

PBI PBU 



www.manaraa.com

39 

 
Figure 4.4 End of precast barriers with longitudinal double-headed ties and receiving pocket    

4.3 Bridge Deck Construction 

Bridge deck construction began with the bridge deck supporting beams first.  For this 

project, there were three beams beneath the deck cast to support the test specimen.  Each 

beam had a cross-section of 12 in. (width) x 18 in. (height) and were placed to align with the 

tie downs holes of the laboratory strong floor.  The beams were positioned three feet apart.  

Once the beams were situated and poured, the deck was fabricated on top of them with an 

overhang.  The deck was 10 ft and 8 in. wide by 24 ft long.  This allowed the deck to 

accommodate for an adequate length for the two 12-foot barrier segments as well as a 3.5-

foot deck overhang for the barriers to be included. Figure 4.5 shows the formwork and the 

supporting beams. As seen in this figure, the sleeves used for positioning the loading block 

are spaced three feet apart from each other in every direction. 

Longitudinal 

double-headed 

ties 

Receiving pocket 
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Figure 4.5 Bridge deck supporting beams with formwork 

With the bridge deck support beams in place, the deck slab was formed, and the 

inserts needed to establish the two barrier to deck connections were installed. The threaded 

bar sleeve used for the inclined PBI connection (see Figure 4.6) was nailed to the deck 

formwork to keep the connection in place during the concrete pour, see Figure 4.7. 

 
Figure 4.6 Inclined bar connection in deck 

 
Figure 4.7 Connected inclined receiving end piece to the deck formwork 
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As noted, the u-bars for the PBU connection are inserted from the underside of the 

overhang into pockets in the bride deck. Cutouts were made, and proper blockage was 

established before pouring the deck concrete. The block outs of these access pockets are 

shown in Figure 4.8. 

 
Figure 4.8 Deck block outs to facilitate U-bar installation 

After the materials need for the barrier to deck connections were installed, the bridge 

deck reinforcement was placed, see Figure 4.9. The bottom reinforcement mat was placed 

with one-inch chairs and reinforcing ties were used at every intersection. The top 

reinforcement was then placed with five-inch metal rebar chairs and tied at every 

longitudinal and transverse intersection. 

 
Figure 4.9 Bridge deck reinforcement 
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Some of the deck reinforcement interfered with the barrier connection regions. On the 

PBI side, this reinforcement was shifted to miss the inclined threaded bar sleeve, see Figure 

4.10. On the PBU side, some of the bottom deck reinforcement interfered with the u-bar 

access pockets. These bars were terminated at the pocket. The top deck reinforcement that 

interfered with the u-bar pockets was shifted so that at least two bars were within the u-

shaped connection as seen in Figure 4.11. 

 
Figure 4.10 Installed PBI connection sleeve with deck reinforcement 

 
Figure 4.11 U-bar access blocks outs with terminated bottom deck steel and top deck steel 

positioned to be within a u-bar connection 

Following the rebar installation, the bridge deck concrete was poured, see Figure 

4.12. The deck was completed in two continuous pours. After the top of the concrete was 
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leveled, the portion of the deck where the barriers were to be placed was finished with a wire 

brush to create a roughened surface. 

 
Figure 4.12 Bridge deck concrete pour 

4.4 Assembly and Grouting 

Once the deck was poured, the precast barrier was placed on the deck overhang.  

There were two options for connecting the inclined connection to the bridge deck. The first 

option was to place the barrier on the overhang deck and then insert the inclined, threaded 

reinforcing bars (see Figure 4.13) from the back side of the barrier through the ducts, down to 

the deck where they are threaded into the hardware embedded in the bridge deck. Another 

option was to first connect the inclined reinforcement to the bridge deck and then lower the 

precast barrier onto the deck over the bars. The second option was used for this project. An 

image of the inclined bars connected to the bridge deck before the installation of the precast 

barrier is shown in Figure 4.14. 
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Figure 4.13 Threaded end of inclined reinforcement 

 
Figure 4.14 Inclined reinforcing bars connected to bridge deck before placement of precast 

barrier 

Once PBI was in place, PBU was installed. PBU was lifted and lowered so that the 

exposed longitudinal double-headed ties slid into the receiving pocket cast into PBI. An 

overhead look of the barrier to barrier connection is shown in Figure 4.15. 

 
Figure 4.15 Barrier to barrier connection 

PBI 

PBU 
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With the two barriers in place on the deck. The final piece of the transverse barrier to 

barrier connection was installed. The threaded, headed transverse reinforcement was inserted 

into the pockets cast into the back of PBI and threaded into the receiving end cast into the 

front part of PBI. The pockets used for this installation is shown in Figure 4.16 

 
Figure 4.16 Pockets used to install transverse barrier to barrier connection 

During the assembly of PBU’s deck connection, proper cover for the u-shaped rebars 

was ensured using two varying forms of rebar chairs.  For the two bundled #5 bars, one-inch 

clip-in chairs were used.  This is shown in Figure 4.17.  For the #7 bars a spacer wheel was 

used to obtain the one-inch cover.  This is demonstrated in Figure 4.18. Then the u-bars were 

inserted, see Figure 4.19, and the pockets were sealed for grouting, see Figure 4.20. 

 
Figure 4.17 Rebar Chairs for #5 Bars 
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Figure 4.18 Rebar Chairs for #7 Bars 

 
Figure 4.19 Insertion of U-bars 

 
Figure 4.20 Sealed U-bar pocket for grouting 

After the bars were in place, the grout pad between the overhang and the barrier was 

poured. In this case, the grout pad had a depth of three-quarter inch.  Also, a foam was placed 

under the barrier three quarter inches from the back side to limit the damage to the barrier 

during the push test, shown in Figure 4.21.  

The inclined corrugated ducts for the inclined reinforcing connection in PBI, also 
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shown in Figure 4.21, was grouted as well.  To improve aesthetics, the exposed bars can be 

cut flush with the back side of the barrier.   

 
Figure 4.21 Foam added to grout pad to minimize damage cover concrete 

The corrugated tubes in PBU were grouted through the inlet until it filled the u-bar 

pocket and began to outflow through the outlet hole on the front face of the barrier, see 

Figure 4.22. The finished underside of the u-bar pocket is shown in Figure 4.23. 

 
Figure 4.22 Grouting of U-bar pockets 
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Figure 4.23 Finished U-bar grout pocket 

The completed barrier installation is shown in Figure 4.24. 

 
Figure 4.24 Completed barrier installation 

4.5 Instrumentation 

To measure the longitudinal strain in the steel reinforcing bars at critical locations, 

strain gauges were used. These gauges were attached to the deck rebar, the precast barrier 

rebar, and selected steel reinforcement used in the connections. Figures 4.25 and 4.26 show 

the location of these strain gauges. Since not all gauges were connected simultaneously to the 

Data Acquisition System (DAS), only the strain gauges within the 45-degree slope from the 

load application region were primarily monitored during each test. 

Figure 4.25 displays the locations of the strain gauges on the vertical barrier 

reinforcing (VT1-8), longitudinal barrier reinforcing (LM1-6), the transverse barrier to 

barrier bar splice (BS1-3), and the bottom deck reinforcing bars (LB1-8). The vertical barrier 
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reinforcement strain gauges were placed in an attempt to coincide with the varying load 

application locations. VT1 is located within 1 foot of the end of PBI at mid height of the 

barrier. VT2 and VT3 are near the center of PBI; VT2 at mid height and VT3 near the 

barrier-deck interface. VT4 and VT5 are placed at the barrier to barrier interface; VT4 at mid 

height of the barriers and VT5 near the barrier-deck interface. VT6 and VT7 are near the 

center of PBU; VT6 at mid height and VT7 near the barrier-deck interface. VT8 is located 

within the last foot of PBU. The strain gauges placed on the longitudinal reinforcement 

(LM1-6) was placed at three to four foot spacing. The gauges placed on the bottom deck 

reinforcement (LB1-8) were placed every four to five bars. There were three gauges placed 

on the three transverse bar splices (BS1-3). Gauges were placed near the center of the 

connection.  

  
Figure 4.25 Location of strain gauges in precast barrier reinforcement and bottom deck 

reinforcement 

Figure 4.26 displays the locations of the strain gauges on the barrier to deck 

connections (CB1-6), the transverse double headed bar between barriers (DH1-4), and the top 
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deck reinforcing bars (LT1-27). The strain gauges were applied to the barrier to deck 

connections near where the load applications would occur. The dimensions to each gauge can 

be seen in Figure 4.26. There were four strain gauges placed on the double headed transverse 

bars. DH1 was applied to the PBI side of the bar. DH2-DH4 were placed on the center of the 

bar at the barrier to barrier interface. There were three rows of gauges on the top deck 

reinforcing bars. Dimensions to LT1-8 are shown in Figure 4.26. LT9-LT27 were located at 

the beginning of the bridge deck overhang, roughly 42 inches from the edge of the deck slab. 

Gauges were attached every three to four reinforcing bars. 

 
Figure 4.26 Location of strain gauges in barrier connection reinforcement and top deck 

reinforcement 

In order to measure the movements of the barrier and bridge deck overhang during 

testing, string potentiometers and LVDTs were used. String potentiometers were placed 

behind the barrier and underneath the bridge deck overhang to measure displacements. 

LVDTs were placed on the front and back side of the barrier to monitor the interface between 

the precast barrier and the deck. Additional LVDTs were placed on top of the bridge deck 
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and underneath to characterize the critical curvature of the overhang. Figures 4.27 and 4.28 

show the locations of all the devices used to measure the movements of the unit while 

testing. A rotational device was also attached to the outer face of the barriers to measure the 

rotation of the test unit during loading. 

 
Figure 4.27 Location of string pots and LVDTs on front side of testing unit 

 
Figure 4.28 Location of string pots and LVDTs on back side of testing unit 
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4.6 Load Application 

As described previously, a number of quasi-static tests were planned to be conducted 

on the precast barrier using a hydraulic actuator.  There were six different load application 

areas identified, which required moving the location of the loading block and the actuator. 

The six load application areas are displayed in Figure 4.29. Each location had a differing 

testing purpose. The purpose of Test 1 was to examine the connection between the barrier 

and the bridge deck using an inclined rod before establishing the barrier to barrier 

connection. Similarly, Test 2 was conducted to inspect the barrier connection involving u-

bars independently. After the connection between the two barriers was completed with 

additional reinforcement and grout, Test 3 was done to examine the connection between 

barriers. Test 4 was located slightly off to the side of the barrier to barrier connection on the 

PBI side to observe the force distribution across the barrier to barrier connection. The last 

two tests, Test 5 and Test 6 were located on the free ends of PBI and PBU. The purpose of 

these tests was to evaluate the connection performance at the free end of the barrier 

segments.  Since neither the deck nor the connection reinforcement was strengthened to 

simulate the end condition of a bridge, these tests are required to provide 50% of the design 

strength. 

 
Figure 4.29 3D Model of Identifying the Testing Sequence and Load Application Areas 
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For all tests, the actuator was reacted against a loading block that was rigidly secured 

to the strong floor of the laboratory through the bridge deck. The load block was positioned 

on the bridge deck away from deck overhang.  For each test, the actuator was positioned such 

that the load could be applied at the top of the barrier, creating the maximum moment 

demand at the barrier to deck interface.  With Test Level 4, the load is to be distributed over 

three and a half feet, which was accomplished using an H-beam attached to the top of the 

barrier as shown in Figure 4.30. The loading block was anchored to the laboratory floor using 

post-tensioning applied vertically at four locations. The actual test set up for used for Test 1 

is shown in Figure 4.31. 

 
Figure 4.30 Lab Test Set-up 
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Figure 4.31 Test Set-up for Test 1 

4.7 Material Properties 

The concrete used for the bridge deck construction and the loading block had a 

specified concrete strength of 4 ksi. Both the bridge deck and the loading block were poured 

in two pours. Concrete cylinders were taken during the pours to establish the actual concrete 

strength. After seven days, the concrete had an average strength of 5.4 ksi for the two pours. 

The concrete continued to grow in strength until the day of the first test when the strength 

was measured to be 6.1 ksi. 

The precast barriers were poured with high early strength 5 ksi concrete. The barriers 

were poured in a controlled setting at a precast plant. Concrete cylinders were included from 

the precast supplier. After 28 days, the barriers had reached an average strength of 7.4 ksi. 

Grout used for the project was Ultraflow grout supplied by CTS Cement 

Manufacturing Corp. This grout was used because it had a fluid consistency that allowed for 

an extended working time, but then gained strength quickly. The grout, which has a specified 

strength of 4 ksi strength after 8 hours, was used in the interface between the precast barriers 
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and the bridge deck, as well as to fill each barrier to deck connection pocket. For PBI, the 

grout was poured from the back of the barrier into the corrugated tubes using a grout tube. 

For PBU, the grout was pumped into the pockets from the front face of the barrier. Grout was 

pumped from one side of the u-bar until it was seen flowing out of the second vent on the 

other side of the same u-bar. During the pour, grout cubes were cast to be used for strength 

testing. After 24 hours, the interface grout had an average strength of 7.3 ksi. After 7 days, 

the grout strength increased to 8.2 ksi. The connection grout had a strength of 7.7 ksi after 24 

hours and a strength of 8.9 ksi after 7 days. 

The reinforcement used in the bridge deck and precast barriers had a specified yield 

strength of 60 ksi. Testing of the deck reinforcing bar strength led to the measured yield 

strength of 72.0 ksi and the ultimate strength of 104.2 ksi. The rebar used for the u-bar 

connection in PBU was stainless steel with a specified yield strength of 75 ksi. The #5 

reinforcing steel used for PBU had a measured yield strength of 70.2 ksi and ultimate 

strength of 114.3 ksi. The #7 stainless steel reinforcing steel used for PBU had a measured 

yield strength of 70.2 ksi and ultimate strength of 112.1 ksi. The steel used for the inclined 

connection in PBI was Grade 60 reinforcing steel. Testing of this #8 reinforcement produced 

a yield strength of 67.5 ksi and ultimate strength of 86.3 ksi. 
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CHAPTER 5 

TESTING AND RESULTS 

 

5.1 Introduction 

Since the precast barriers were designed for TL 4, they were required to sustain a 

maximum lateral load of 54 kips that is applied uniformly over 3.5 feet. During testing, the 

load was applied incrementally up to 54 kips. A load step of 6 kips was used and the test was 

paused at the end of each load step to observe any damage to the test unit. For the first two 

tests performed, the barrier to barrier connection was left ungrouted and disconnected.  

Barrier PBI with an inclined bar connection was tested first.  PBU with the u-bar connection 

was tested next before the barrier to barrier connection was established.  This was 

accomplished by threading the transverse bar splicers and grouting the connection region.  

Once the connection between the two barrier segments was established, the third test was 

conducted directly at the center of the two barriers.  For the fourth test, the load was applied 

1.75 ft from the barrier to barrier connection.  It was tested on the PBI side of the test 

specimen to ensure that we achieve the selected failure mechanism.  The last two 

experiments included load application to the free ends of both PBI and PBU, where the load 

resistance was expected to be only 50% of those from Tests 1 and 2. The chart below 

illustrates the top of the barrier’s deflection throughout the course of the first four tests. Even 

though the actuator was moved for each test, a single reference point was used at the center 

of the entire test specimen and was used to create the continuous plot to demonstrate the 

performance during different tests.  
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Figure 5.1 Continuous test plot of top of barrier deflection for Tests 1-4 

PBI was subjected to the desired target force of 54 kips during Test 1. During Test 2, 

PBU experienced premature failure and thus the test was terminated after applying 36 kips. 

Test 3 conducted at the center barrier-to-barrier connection was tested to the desired target 

force of 54 kips, followed by an additional load step of six kips to further evaluate the 

connection performance. In order to protect any more damage occurring to PBU during Test 

4, which was conducted on the PBI side of the barrier-to-barrier connection, a brace beam 

was added to the test unit to limit the deflection of PBU, see Figure 5.2. This explains the 

increased stiffness seen in Test 4 in Figure 5.1. 

 
Figure 5.2 Brace Beam 
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The top barrier deflection observed during Tests 5 and 6 are displayed in Figure 5.3. 

Test 5 was conducted on the free end of PBI in the push direction and was taken to failure. 

The brace beam was attached during Test 5. Test 6 was conducted on the free end of PBU in 

the push direction and was taken to failure. The brace beam was disconnected during Test 6. 

In both tests, the barriers were pushed to deflect the extent of the hydraulic actuator used to 

apply the force. They were also pulled in the opposite direction to observe the damage.  In 

comparison to Tests 1 and 2, lower resisting forces were obtained during Tests 5 and 6. This 

is because the barrier ends were not designed to simulate the bridge end condition, producing 

50% of the resistance at the barrier ends of the test unit than away from them. 

 
Figure 5.3 Top of barrier deflection for Tests 5 and 6 

5.2 Test 1 Observations – PBI Middle 

The loading block and actuator were set up to apply the load at the center of PBI at 

the top of the barrier over 3.5 ft length.  The first two load increments produced no visible 

cracks on the test unit. The deck began to crack as the applied load approached 18 kips. The 

initial flexural cracks were noticed on the bridge deck overhang, as seen in Figure 5.4; three 
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somewhat uniformly spaced flexural cracks were formed on the deck overhang and they were 

visible along the entire length of PBI. The lateral deflection at the top of the barrier was 

0.105 inches after applying 18 kips.   

 
Figure 5.4 Test 1 - Formation of flexural cracks on the deck overhang 

As the load was increased, the flexural cracks extended along the overhang and over 

the side of the bridge deck. At 24 kips, cracks also began to develop along the grout pad that 

was placed between the barrier and the top of the deck. At 24 kips, the barrier deflection 

reached 0.215 inches.  When the load was increased to 30 kips, there were only minor crack 

extensions on the deck and on the side of the bridge deck. The measured deflection was 

0.317 inches.  It was at 36 kips when the cracks on the deck extended over to the other side 

where PBU was located.  There was no crack extension on the side of the bridge deck, but a 

new crack developed behind PBU near the barrier-to-barrier interface.  This crack was due to 

testing the barriers individually without connecting the two. At this point, lateral deflection 

of the barrier at the top was 0.426 inches.  The load was then increased to 42 kips, which led 

to small deck crack extensions and crack widening. The deflection corresponding to the 42-

kip load was 0.536 inches.  It wasn’t until the load reached 48 kips that diagonal, hairline 

cracks began to develop on the barrier near the barrier-to-barrier interface, see Figure 5.5, at 

which point the deflection was 0.67 inches.  Finally, the load was increased to the full 54 
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kips.  The crack on the back of the deck behind PBU widened and the cracks on the side of 

the deck had small extensions.  No new cracks were seen on the barrier.  The deflection of 

PBI at this point was 0.81 inches, the majority of which was due to the deck rotation and the 

concentrated crack developed at the bottom of the barrier along the grout interface.   

 
Figure 5.5 Test 1 (PBI Middle) barrier cracks 

After the loading was complete, the crack widths were measured.  The thickest cracks 

appeared on the backside of the bridge deck behind PBU, see Figure 5.6.  The maximum 

width of this crack was 0.083 inches.  The widest crack measured on the bridge deck was 

0.02 inches.  The cracks that developed within the grout between the deck and the barrier on 

the front side of the barrier reached 0.03 inches.  On the side of the deck, the maximum crack 

width was about 0.007 inches. 

 
Figure 5.6 Formation of crack on back side of test unit during Test 1 
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Once all the testing and measuring was complete, PBI was unloaded.  At zero load, 

PBI exhibited a residual displacement of 0.27 inches.  A small load was applied in the 

opposite direction and unloaded, but the residual displacement remained unchanged. No new 

cracks were seen during the pull direction loading.  At this point, the test was terminated. 

5.3 Test 1 Results – PBI Middle 

During testing, string potentiometers, DCDTs, LED sensors and strain gauges were 

used to record data and measurements. A string pot was placed behind the barrier along the 

direction of the load application to measure the lateral deflection of PBI. This deflection was 

plotted against the applied load and can be seen in Figure 5.7, where the push direction of 

loading and displacements were taken as positive. Within this figure, the testing location is 

also displayed. The barrier location denoted as zero is the center of the entire test specimen 

where the two barrier segments were eventually connected.   It was at 14.6 kips when the 

stiffness of the system was reduced, which corresponded with the formation of first cracks on 

the deck. This is also called out in Figure 5.7. Once the deck experienced cracking, the 

response followed a path reflecting the influence of cracked stiffness of the system and the 

deflection increased steadily with each load increment. There was no indication of yielding 

of the reinforcement. This is consistent with the design in that the barriers remained elastic 

for the design load of 54 kips.   
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Figure 5.7 Force displacement for Test 1 – PBI 

Behind the barrier, along with the string potentiometers measuring the barrier 

deflection, were two other string potentiometers. They were placed six feet away from the 

center of the load application on both ends of the barrier. In Figure 5.8, the deflection of the 

entire length of PBI at each load increment is shown. Each end of the barrier experienced a 

similar deflection value while the center of the barrier deflected the most. The left end of PBI 

experienced a small increase in deflection versus the right end. This was due the deck being 

terminated below the left end whereas it was continuous below right end of PBI. As 

previously noted, after testing was complete, the barrier had a residual deflection of 

approximately 0.27 inches. 
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Figure 5.8 Top barrier deflection profiles of PBI during Test 1 

During testing, the strains on the inclined reinforcing bars were also recorded. Strain 

gauges were placed on three of the five bars in the barrier. The bars on each end of the barrier 

and the bar in line with the center of the load were instrumented. Shown in Figure 5.9 are the 

profiles for the strains measured at the barrier to deck interface. As expected, the inclined 

connection reinforcement in line with the center of the load experienced the most strain and 

stayed just below yield when the maximum load was applied. Just before the load increment 

of 24 kips, it was noted that the first crack along the length of the grout pad beneath the 

barrier was seen. Figure 5.8 indicates that the cracking was initiated as the load was 

increased to 18 kips. From this point onwards, strain demand on the connection rebar 

continued to increase. Both inclined reinforcement rebars near the ends of the barrier 

segment had similar strain values. On average, these strains were about 80 percent of that 

recorded at the center of the barrier at the design load. These inclined reinforcement bars 

were not expected to participate in resisting the moment according to AASHTOs expected 
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force distribution of one-to-one slope from the load application (see Figure 2.2). The deck 

reinforcement strain profiles are shown in Figure 5.10. The deck reinforcement in the free 

end of the PBI test unit experienced larger strain values than the restrained end of PBI. 

 

Figure 5.9 Strain profiles of the inclined reinforcement barrier connection bars at the deck 

interface during Test 1 

 
Figure 5.10 Strain profiles of the deck reinforcement at the front barrier interface during Test 

1 
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The measured barrier displacement at the top, which reached a maximum value of 

0.81 inches during Test 1, included the flexural deflection of the barrier and those due to the 

rotation of the barrier at the deck interface and the barrier deflection resulting from the 

rotation that the deck overhang experienced. As shown in Figure 5.11, the barrier’s flexural 

deflection was only about 3.5% of the total deflection at 0.028 inches of the 0.81 in. and the 

deflection of the barrier due to formation of a crack at the barrier to deck interface accounted 

for 17.3% at 0.140 inches. This implies that the majority of the measured barrier deflection 

was largely due to the rotation of the deck. The deformation of the deck was somewhat 

amplified by a large deck crack that developed on the backside of the deck behind the PBI-

PBU connection region, see Figure 5.6. This crack developed because during Test 1, the 

barriers were not connected, therefore not engaging PBU or the portion of the deck 

supporting PBU. This crack was the result of testing PBI in an isolated manner and should 

not be expected when barriers are connected together.  

 
Figure 5.11 Components of the measured PBI deflections 
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5.4 Test 2 Observations – PBU Middle 

The second test was conducted on PBU with the u-bar connections.  The loading 

block and actuator were repositioned to apply loads in the center of PBU at a height of 3.5 

feet above the deck. The purpose of this test was to examine the u-bar connection between 

the precast barrier and the bridge deck. The loading was planned to be applied up to 54 kips 

in six-kip increments as completed for PBI.  After PBU was loaded to 36 kips, it failed to 

sustain any further load without experiencing significant deflection and therefore the test unit 

was unloaded at this point.  

The first three intervals, up to 18 kips, performed very similar to the response of PBI 

in Test 1. New deck cracking began around 18 kips. At this point, the barrier was deflected 

0.164 inches. At 24 kips, a crack became visible along the entire length of the grout pad 

between the bottom of the barrier and the top of the bridge deck, see Figure 5.12. The 

existing cracks continued to widen up until about 36 kips. Some softening in the system was 

observed when the load was about 36 kips and the barrier began to experience large 

displacements. The test was paused and unloaded after the barrier deflection reached 0.8 

inches. 

 
Figure 5.12 Crack at the barrier to deck interface in PBU during Test 2 
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After unloading from 36 kips, the barrier was subjected to 4 kips in the pull direction 

in an attempt to reposition the barrier to the residual displacement obtained from PBI. The 

final resting deflection of PBU after the pull direction loading and unloading was complete 

was 0.3 inches. 

5.5 Test 2 Results - PBU Middle 

The applied force versus the barrier deflection obtained for PBU is shown in Figure 

5.13, in which the positive values correspond to push direction loads and displacements. 

Each load increment and the point when the deck crack was first observed is identified; the 

change in stiffness suggests that cracking probably developed when the applied load 

exceeded 12 kips. Although the initial response of PBU was similar to PBI, PBU experienced 

larger displacements than PBI for the same lateral load, see Figure 5.1. Beyond 36 kips, the 

lateral load resistance of PBU began to drop with increasing displacement. 

 
Figure 5.13 Lateral vs. force displacement obtained for Test 2 – PBU 
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To monitor the movement of barrier PBU during testing, string potentiometers were 

placed behind the barrier at each end and in the center where the load was being applied as 

with the PBI testing. For each loading increment, the barrier deflection is shown in Figure 

5.14. Behind the center of the force, the barrier deflected the most, as expected. The free end 

of the barrier where the deck was terminated in this figure is at x = 12 feet. The end with the 

barrier-to-barrier connection where the deck was continuous is indicated with x = 0. As with 

PBI, the free end of PBU experienced a small increase in deflection versus the fixed end. 

However, the difference in barrier deflection between the free end and the fixed end is not as 

large as was observed for PBI.  

 

Figure 5.14 Lateral top deflection of PBU during Test 2 
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the test unit. Compared to Test 1 conducted on PBI, the strain values recorded in the 

connection reinforcement during Test 2 were similar up to the lateral load of 36 kips. The 

maximum recorded deck displacement was 0.28 inches at this point. The deck reinforcement 

strain profiles are shown in Figure 5.16. The deck reinforcement in the free end of the PBU 

test unit experienced larger strain values than the restrained end of PBU. 

 
Figure 5.15 Strain in the U-bar at the deck to barrier interface during Test 2 

 
Figure 5.16 Strain profiles of the deck reinforcement at the front barrier interface during Test 
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2 

The deflection of PBU recorded during Test 2 also included the flexural deflection of 

the barrier and the deflections due to the rotation of the barrier at the deck interface and the 

rotation that the deck overhang experienced. These components are depicted in Figure 5.17 

along with the experimental value. Although the maximum measured lateral deflection of 

PBU was 0.8 inches, the actual barrier’s deflection accounted for 2.1% of the deflection at 

0.017 inches and the deflection at the barrier and deck interface accounted for 20.3% at 0.162 

inches. As with Test 1, the majority of the measured barrier deflection was mainly due to the 

rotation of the deck overhang. The large deflection and rotation recorded were partly due to 

the damage that occurred to the deck behind the barrier as previously discussed.  

  
Figure 5.17 Deflection of components  
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block and actuator were set up to apply loads over a 3.5-foot length in the center of the entire 

test unit. The purpose of this test was to examine the connection between the precast barriers. 

In the early stages of testing, no new cracks developed, but old cracks began to open up. As 

the load approached 30 kips, a new crack appeared on the side of the bridge deck on the PBI 

side. It wasn’t until 48 kips was reached, when cracks began to appear on the PBI barrier 

itself. They were diagonal cracks running in the opposite direction to the ones formed during 

Test 1, see Figure 5.18. The barriers were able to withstand a maximum load of 60 kips prior 

to experiencing a change in stiffness, indicating a softer response. At this point, the load was 

released. The cracks along the grout between the barriers and the deck remained open after 

the actuator load reached a zero value. The crack on the PBI side of the grout pad was 

measured at a width of 0.005 inches. The PBU side was measured at a width of 0.07 inches. 

The majority of the residual cracks appeared on the PBI side while most cracks developed on 

PBU were closed. Due to PBU’s weakened state, most of the load was most likely 

transferring to PBI. 

 
Figure 5.18 Diagonal cracks developed on PBI during Test 3 
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5.7 Test 3 Results – At Barrier to Barrier Connection 

The force-displacement plot established from Test 3 is presented in Figure 5.19, 

where the positive directions correspond to the push direction loading. For each six-kip load 

increment the peak values are identified up to the maximum applied load of 60 kips. When 

the load was released, a residual displacement of 0.2 in. was registered.  

 
Figure 5.19 Force-Displacement response obtained for Test 3 
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deflections and they were closer to the values recorded at the barrier to barrier connection, 

implying that the entire PBU was rotating at the base as the load was applied. The maximum 
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recorded deflection during this test was 0.73 inches. The residual deflections shown in this 

figure shows 0.4 in. at the barrier to barrier connection and 0.4 in at the of PBU. This 

reported value at the barrier to barrier center is higher than that which can be inferred from 

Figure 5.19 because Figure 5.20 reports the absolute values from the beginning of the test. 

The higher residual displacement obtained at the center of PBU than that obtained at the 

center of the barrier to barrier connection is another indication that u-bars anchored into deck 

was failing.  

 
Figure 5.20 Top barrier deflection profiles established from Test 3 data 

The strain recorded in the connection reinforcement at the deck interface is shown in 

Figure 5.21. It is seen that the inclined reinforcing bars in PBI experienced significantly more 

strain than the u-bar reinforcement in PBU. This confirms the theory that the majority of the 

load that was applied at the center of the test unit was resisted by PBI and transferred to the 

deck mostly in the left half of the specimen. 
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Figure 5.21 Strain in barrier to deck connection interface during Test 3 

The strain recorded on the longitudinal, double-headed ties connecting the two 

precast barriers is shown in Figure 5.22. Strain gauges were placed on the center of the 

double-headed tie at the barrier-to-barrier interface. As the distance from the load increases, 

the strain values decrease. The top double-headed tie is closer to the applied load and 

therefore has the highest strain readings—about twice that recorded closer to the deck 

interface. The strain demand on the ties was generally low because the beam used to 

distribute the load assisted in transferring the loads to the barriers. 
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Figure 5.22 Strain in the center of the longitudinal double-headed ties in barrier to barrier 

connection during Test 3 

The strain in the transverse double-headed ties used in the barrier to barrier 

connection is shown in Figure 5.23. As with the longitudinal ties, the transverse ties 

decreased in strain as the distance from the applied load increased. The magnitude of strains 

is very small. 

 
Figure 5.23 Strain in transvers double-headed ties placed near the barrier to barrier 

connection during Test 3 
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5.8 Test 4 Observations – Off-Center, PBI Side 

For Test 4, the loading beam was placed to the PBI side of the barrier to barrier 

connection. The center of the load was three feet from the barrier to barrier connection. The 

purpose of the test was to observe the force transfer through the barrier to barrier connection 

and to evaluate the capacity of the center connection. Before this test was performed, a beam 

was placed on the PBU side to brace the barrier and keep it from deflecting. This brace beam 

can be seen in Figure 5.24. 

 
Figure 5.24 Beam used to brace PBU with respect to the deck during Test 4 

New hairline cracks didn’t form on the grout between the barriers until 24 kips of 

load was applied. Other previous cracks just opened and extended. At 48 kips, a vertical 

crack developed on the front face of the grout between the barriers, while another vertical 

crack formed on the back of the barrier to barrier grout at 54 kips. This crack started at the 

bottom of the barrier. As the loads were increased, cracks continued to extend vertically. At 

72 kips, new cracks developed on the top of the barrier to barrier grout. The load was 

increased up to 81 kips before it started dropping. The test continued until the deflection of 

1.75 inches was recorded. A large crack developed along the barrier under the loading beam, 

see Figure 5.25, and the barrier to barrier grout broke all the way along the top to the back, 

see Figure 5.26. 
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Figure 5.25 Cracking under the loading beam on PBI during Test 4 

 
Figure 5.26 Failure pattern of barrier to barrier connection at the end of Test 4 

5.9 Test 4 Results – Off-Center, PBI Side 

The force-displacement response obtained for Test 4 is displayed in Figure 5.27. The 

peak value corresponding to each loading increment is identified in the figure. Following the 
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maximum load of 81 kips, the load drooped to 43 kips as the displacement was increased. 

From this point, the load was released, realizing a residual displacement of 1.06 inches.  

 
Figure 5.27 Force-Displacement response obtained for Test 4 

The top deflection of the barrier system is shown in Figure 5.28. Recall that before 

starting Test 4, a beam was used to brace PBU to limit its movement. The brace location was 

near “0” ft in Figure 5.28. The data points to the left of zero are the deflection readings from 

PBI. The data points to the right of zero barrier location are the deflection readings from 

PBU. As the lateral load was increased, the deflection of PBI became uniform along the 

length, indicating the participation of the entire barrier in resisting the load. According to this 

figure, PBU recorded a lateral deflection in excess of 6 in., a majority of which came from 

the deck deflection. The difference in movement between PBI and PBU towards the end of 

the test is shown in Figure 5.29. 
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Figure 5.28 Top lateral deflection of barrier during Test 4 

 
Figure 5.29 Difference in barrier movement at barrier to barrier connection at the maximum 

load during Test 4 

The strain in the barrier to deck connections during Test 4 are shown in Figure 5.30. 

The inclined reinforcing steel in PBI experienced similar strains throughout the length of PBI 

while the u-bar connection in PBU experienced noticeably lower strain values. This image 

also demonstrates that the force is dispersed at an angle lower than the expected 45°, 

meaning more connection reinforcement and longer length of the deck would participate in 

resisting loads compared to that stipulated from the current code recommendation. 
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Figure 5.30 Strain in barrier connection reinforcement at the deck interface during Test 4 

The strain recorded on the longitudinal, double-headed ties connecting the two 

precast barriers is shown in Figure 5.31. Strain was recorded at the center and is shown as a 

function of vertical distance from the top of the barrier where the load was applied. Test 4 

was intended to test the barrier-to-barrier connection to failure. As the load approached 48 

kips, cracks within the barrier-to-barrier grout were observed and the longitudinal ties 

became more engaged in the load transfer as the load was increased with the maximum 

demand in the tie that was 1.3 feet from the top of the barrier. 
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Figure 5.31 Strain in longitudinal double-headed ties in barrier to barrier connection during 

Test 4 

The recorded strain in the transverse double-headed ties used in the barrier-to-barrier 

connection in the transverse direction is shown in Figure 5.32. As with the longitudinal ties, 

once the cracking was observed in the barrier-to-barrier interface grout, the transverse ties 

farther away from the load became more engaged. 

 
Figure 5.32 Strain in transvers double-headed ties during Test 4 
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5.10 Test 5 Observations – End of PBI 

For Test 5, the loading beam was moved to the free end of PBI. The brace beam was 

kept in place for this test. The purpose of the test was to observe the failure of PBI with 

loading at the free end of the barrier and evaluate the connection performance that included 

the inclined reinforcement to connect the barrier to the deck.  Recall that this free end was 

not designed to simulate the end of the barrier condition. 

As loading was applied to the barrier, the previous cracks developed on the barrier 

and deck began to open and widen. When the load increment approached 30 kips, the barrier 

began to fail to endure any further loading. This is consistent with the expectation that the 

end region as designed should support 50% of the design load. Testing was continued under 

displacement control. During this phase of testing, the crack along the barrier to deck grout 

interface was visible along a length of up to 9 feet from the free end of the barrier. The 

inclined cracks on the barrier were widespread on the entire barrier. Loading continued from 

1.25-inch deflection to 4.85 inches when the actuator stroke was at its maximum, shown in 

Figure 5.30. In this figure, the widening of the bridge deck cracks may also be observed. 

Splitting cracks formed throughout the overhang between the top and bottom deck 

reinforcement mats. The diagonal cracks along the front and rear face of the barrier also 

continued to extend. Loading was then released, and a pull direction load was applied to the 

barrier, which began to open up the back side of the barrier to deck interface. 
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Figure 5.33 Final barrier deflection and cracking in bridge deck during push direction 

loading in Test 5 

The pull load applied to the barrier reached a maximum of 22 kips. The resulting 

barrier profile is displayed in Figure 5.34. During the pull direction loading, the front of the 

barrier experienced minimal damage while the connection between the barriers experience 

significant damage and failure, see Figure 5.35. 
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Figure 5.34 Damage to barrier and deck after Test 5 pull test 

 
Figure 5.35 Damage to barrier-barrier interface after Test 5 
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As a result of the pull test, the front side of the barrier at the deck interface began to 

spall. This spalling exposed the sleeve and connection of the inclined reinforcement, see 

Figure 5.36. It is seen that the barrier to deck connection was still intact and undamaged. 

 

    
Figure 5.36 Concrete spalling on front of PBI at deck interface and barrier to deck 

connection 

5.11 Test 5 Results – End of PBI 

The force-displacement response obtained from Test 5 is displayed in Figure 5.37, 

where the reported displacement reflects the absolute values form the beginning of Test 1. 

The maximum applied load in excess of 30 kips was sustained until the displacement reached 

close to 6 inches, demonstrating sufficient toughness for the connection. After that, the 

barrier progressively failed. The test was continued until the barrier experienced a deflection 

in excess of 6 inches.   
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Figure 5.37 Recorded force-displacement response during Test 5 

The deflection at the top of PBI during Test 5 is shown in Figure 5.38. The reported 

displacement of this figure reflects the absolute displacement from the beginning of Test 1, 

while the values in the legend reflect the relative target displacement from the beginning of 

Test 5. The placement of the brace beam limited the amount of deflection at the barrier to 

barrier interface, which was located at x= “0” feet in this figure. The free end of PBI, where 

the load was applied, experienced the most lateral deflection. During testing, instrumentation 

was removed at various stages to protect them from damage. The first testing instruments 

were removed after the top of barrier deflection was at 2.5 inches.  
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Figure 5.38 Deflection at the top of the barrier during Test 5 

The strain in the barrier to deck connections during Test 5 are shown in Figure 5.39. 

The inclined reinforcing steel nearest to the barrier to barrier interface show no significant 

strain demand. This is believed to be due to that region of the barrier experiencing damage 

during Test 4. The longitudinal, double-headed ties and the transverse double-headed ties 

connecting the two precast barriers also sustained further damage during Test 5. As such, 

usable data was obtained during this phase of testing. 

 
Figure 5.39 Strains in PBI at the barrier to deck connection interface during Test 5 
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5.12 Test 6 Observations – End of PBU 

For the final test, Test 6, the loading beam was moved to the free end of PBU. The 

brace beam near the barrier to barrier connection was removed for this test. The purpose of 

the test was to observe the failure of the U-bar barrier to deck connection.  

The applied load to the barrier was taken to about 24 kips under force control before 

switching to a deflection-based loading. As the PBI was loaded, the crack between the deck 

and the barrier interface opened and continued to widen. At one-inch of lateral deflection, the 

crack was visible along the entire length of PBU. When the deflection got to be around three 

inches, the cover concrete under the deck overhang started to spall. The barrier appeared to 

start slipping horizontally in the direction of loading when testing to 4.5-inch of deflection. It 

total, it slipped about 0.75 inches back from its starting position when the lateral deflection of 

4.5 inches was reached. As the testing was continued and the barrier deflection reached about 

six inches, the sliding was measured to be about one inch. Figure 5.40 below shows PBU at 

the final resting position after the push test was completed.  

 
Figure 5.40 Final barrier deflection and the corresponding damage to the bridge deck during 

Test 5 
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The load was then completely released, and the pull direction loading was started. 

The pull test was continuous until the barrier and/or its connections experience failure. As the 

testing continued, the top cover concrete of the deck behind the barrier completely separated 

and fell off. The barrier and bridge deck opened sufficiently behind the barrier to expose the 

top reinforcement in the deck and the U-bars connecting the barrier to deck being responsible 

for causing the split between the top and bottom matt reinforcement of the deck, see Figure 

5.41 below. In order to prevent this phenomenon, the top and bottom matt reinforcement 

needs to be tied where the connection bars are anchored. Though the same damage was not 

suspected during testing of PBI, some extent of this failure mode was visible during 

inspection following the completion of all the tests. Therefore, it will be prudent to place 

vertical headed ties or hairpin type reinforcement in the vicinity of the connection 

reinforcement avoid splitting failure developing between the top and bottom matt 

reinforcement. Alternatively, the connection reinforcement could be locked in place with the 

bottom matt reinforcement, which may cause constructability challenges.  

    
Figure 5.41 Top matt of the bridge deck reinforcement after the Test 6 pull test 

5.13 Test 6 Results – End of PBU 

The force-displacement response obtained for Test 6 is displayed in Figure 5.42. The 

maximum applied load to PBI was 25 kips.  This value is more than 50% of the resistance 

observed in Test 2, which is due to limiting the lateral deformation of the barrier. As can be 
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seen, after experiencing about 3-inch lateral displacement, the barrier resistance continued to 

soften. To test the barrier connections to failure, the test was continued until the lateral 

deflection exceeded 6 inches.  

 
Figure 5.42 Recorded force-displacement response for push direction loading in Test 6 

The deflection at the top of PBU during push direction loading of Test 6 is shown in 

Figure 5.43. The entire length of PBU deflected at a similar rate through all increments of the 

test. This was believed to be due to the failure of the barrier-deck connection experienced 

during Test 2 and the insufficient anchorage of the U-bars with respect to the bottom matt 

reinforcement of the deck.  
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Figure 5.43 Top barrier deflection during push direction loading of Test 6 

The strain in the barrier to deck connections during the push direction loading of Test 

6 are shown in Figure 5.44. The left side of the graph is near the barrier to barrier interface 

and includes the #7 U-bar reinforcement. The right side of the graph is the free, unconnected 

end of PBU and includes the bundled #5 U-bars. It is seen that strain increase in the U-bars 

after reaching a lateral deflection of 1.5 inches is relatively small, which is consistent with 

the force resistance as shown in Figure 5.42. 

 
Figure 5.44 Strain in barrier to deck connection interface in PBU during push direction 

loading in Test 6 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

 

6.1 Introduction 

This report has summarized an investigation on the structural behavior of a developed 

precast barrier system that included durable connection details. In order to get a better 

understanding of the design and performance of prefabricated concrete bridge barriers, a 

literature review was performed and was used to establish the basis for this study.  Two 

barrier to deck connections and one barrier to barrier connection were designed and tested 

according to test level 4 from the Federal Highway Administration. The loading associated 

with test level 4 of 54 kips was used as the design load for the connections. The first barrier 

system included inclined reinforcing steel connecting the barrier to the bridge deck and was 

identified as PBI. The second barrier system included a u-shaped stainless-steel reinforcing 

bar connecting the barrier to the bridge deck and was identified as PBU. The connection 

details were designed to accommodate various parameters including ease of construction, 

maintenance and repair, durability, and cost effectiveness. The precast barrier systems were 

constructed and tested under different loading conditions to examine the structural 

performance, the load carrying capacity, and the force distribution.  

6.2 Conclusions 

A total of six tests were conducted. Conclusions drawn from this study are as follows. 

The two precast barrier systems did not have any construction challenges during fabrication. 

The barrier system connections were assembled as planned without any difficulties. The 

construction of PBI required minimal access to install the connection reinforcement. PBU 

required access from under the bridge overhang to install the u-shaped connection 
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reinforcement. A summary of the loading and deflection of the barrier for each test is 

provided in Table 6.1. 

Table 6.1. Summary of Various Tests Conducted on the Barrier 

Test Maximum Load 
Maximum Lateral Displacement for 

Each Test 

PBI Middle (Test 1)  Push = 54 kips 0.81 inches 

Target = 54 kips Pull = 2 kips Residual displacement = 0.27 inches 

PBU Middle (Test 2)  Push = 36 kips 0.80 inches 

Target = 54 kips Pull = 4 kips Final resting position = 0.30 inches 

Center - Attached (Test 3)  Push = 60 kips 0.73 inches 

Target = 54 kips   Final resting position = 0.17 inches 

Off Center, PBI (Test 4)  Push = 81 kips Loaded until 1.75 inches 

Target = Failure   
End of PBI (Test 5)  Push = 30 kips 4.9 inches 

Target = Failure Pull = 22 kips   

End of PBU (Test 6)  Push = 24.8 kips Relative displacement = 6.0 inches 

Target = Failure Pull = 27 kips   

 

When an isolated unit of PBI was subjected to test level 4 loading, it performed 

satisfactorily, which was expected. The barrier, deck and barrier to deck connection 

performed well with no elastic strains developing in the deck reinforcement. The deck began 

to crack as the loading approached 18 kips. Hairline diagonal cracks were witnessed on PBI 

as the loading reached 48 kips. The cracking that developed on the deck was uniform and 

extended beyond the expected 45° force dispersion, suggesting more length of the deck 

participating in resisting the applied loads. As the applied load reached 54 kips, the top of the 

barrier experienced a total top lateral displacement of 0.81 inches with only 3.5% of the 

displacement coming from the barrier itself and the largest contribution is from the flexural 

deformation of the deck overhang. 

During the isolated testing of PBU, Test 2, the barrier was able to resist 36 kips 

without experiencing significant rotations at the base. Larger rotation occurred from this 
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point onward with localized deformation concentrated at the bottom of the barrier. This was 

suspected to be due to the U-bars not adequately tied to the bottom deck reinforcement in the 

deck and the associated deformation of the top deck reinforcement.  

The test conducted on the barrier to barrier connection, Test 3, also performed as 

expected. The barrier system was loaded up to 60 kips with PBI supporting the majority of 

the load. The strain developed in the PBI deck connection reinforcement was significantly 

more than the strain experienced in the PBU deck connection reinforcement. Test 4 included 

loading on the PBI side of the barrier to barrier connection and demonstrated the force 

distribution about the barrier to barrier connection and the failure pattern of the connection. 

Testing at the ends of the barriers, i.e., Test 5 and 6, produced lower resisting forces 

than Test 1 and 2. This is because the barrier ends did not simulate conditions expected at the 

bridge ends, making them to produce 50% of the resistance in comparison to those expected 

when testing away from the ends. With both connections in Tests 5 and 6, the failure initiated 

within the deck. The premature failure is also due to the extent of damage from the previous 

tests. To increase the force resistance of the ends of the barriers when used at the bridge ends 

or where the deck is joined, it is recommended that the bridge deck be designed to take a 

higher moment demand. It is also recommended that the vertical, inclined bars be spaced 

closer together.  To double the load resistance to deal with an impact at the end of the bridge, 

it is suggested that all spacing be reduced by 50%, see Figure 6.1. 
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Figure 6.1 Schematic drawing of recommended spacing for inclined bar connection at a 

bridge end 

Due to the design of the u-bar barrier to deck connection, the bottom deck reinforcing 

bars had to be terminated where they interfered with the u-bar deck pockets. This resulted in 

more demand on the top deck reinforcement, causing a splitting crack to develop between the 

top and bottom mat reinforcement. This led the bridge deck overhang to fail. 

In the design process, the impact force was assumed to disperse in the barrier at a 45° 

angle from the region where the load was applied. Results from this experiment demonstrated 

that the actual distribution angle was lower than 45°. Therefore, more of the barrier and 

bridge deck were engaged in resisting the load. The deck cracking pattern observed during 

testing showed that engagement of the deck reinforcement was farther than the expected 

result. The strain experienced by the deck reinforcement was fairly uniform along the 45° 

dispersion indicating that reinforcement can be reduced in this area by at least 30%. 

The inclined reinforcement connection proved to be sufficient for a Test Level 4 

barrier system. In light of the observed failure, it is recommended that when precast barriers 

are connected to the deck, providing local reinforcement around the connection bars such that 

they engage both the top and bottom deck reinforcement simultaneously. This can be 

accomplished using vertical double-headed bars or hairpin type bars running horizontally. 
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